Hopf Galois structures on primitive purely inseparable extensions
نویسندگان
چکیده
Let L/K be a primitive purely inseparable extension of fields of characteristic p, [L : K] > p, p odd. It is well known that L/K is Hopf Galois for some Hopf algebra H, and it is suspected that L/K is Hopf Galois for numerous choices of H. We construct a family of K-Hopf algebras H for which L is an H-Galois object. For some choices of K we will exhibit an infinite number of such H. We provide some explicit examples of the dual, Hopf Galois, structure on L/K.
منابع مشابه
Scaffolds and integral Hopf Galois module structure on purely inseparable extensions
Let p be prime. Let L/K be a finite, totally ramified, purely inseparable extension of local fields, [L : K] = p, n ≥ 2. It is known that L/K is Hopf Galois for numerous Hopf algebras H, each of which can act on the extension in numerous ways. For a certain collection of such H we construct “Hopf Galois scaffolds” which allow us to obtain a Hopf analogue to the Normal Basis Theorem for L/K. The...
متن کاملHopf Galois structures on Kummer extensions of prime power degree
Let K be a field of characteristic not p (an odd prime), containing a primitive p-th root of unity ζ, and let L = K[z] with x n − a the minimal polynomial of z over K: thus L|K is a Kummer extension, with cyclic Galois group G = 〈σ〉 acting on L via σ(z) = ζz. T. Kohl, 1998, showed that L|K has pn−1 Hopf Galois structures. In this paper we describe these Hopf Galois structures.
متن کاملPrimitive Ideals in Hopf Algebra Extensions
Let H be a finite-dimensional Hopf algebra. We study the behaviour of primitive and maximal ideals in certain types of ring extensions determined by H . The main focus is on the class of faithfully flat Galois extensions, which includes includes smash and crossed products. It is shown how analogous results can be obtained for the larger class of extensions possessing a total integral, which inc...
متن کاملGeneric Hopf Galois extensions
In previous joint work with Eli Aljadeff we attached a generic Hopf Galois extension A H to each twisted algebra H obtained from a Hopf algebra H by twisting its product with the help of a cocycle α. The algebra A H is a flat deformation of H over a “big” central subalgebra B H and can be viewed as the noncommutative analogue of a versal torsor in the sense of Serre. After surveying the results...
متن کاملHopf Galois Structures on Degree p2 Cyclic Extensions of Local Fields
Let L be a Galois extension of K, finite field extensions of Qp, p odd, with Galois group cyclic of order p2. There are p distinct K-Hopf algebras Ad, d = 0, . . . , p− 1, which act on L and make L into a Hopf Galois extension of K. We describe these actions. Let R be the valuation ring of K. We describe a collection of R-Hopf orders Ev in Ad, and find criteria on Ev for Ev to be the associated...
متن کامل